Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(5): 4299-4326, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38451187

RESUMO

The tsRNAs (tRNA-derived small RNAs) are a novel class of small non-coding RNAs derived from transfer-RNAs. Colon adenocarcinoma (COAD) is the most malignant intestinal tumor. This study focused on the identification and characterization of tsRNA biomarkers in colon adenocarcinomas. Data processing and bioinformatic analyses were performed with the packages of R and Python software. The cell proliferation, migration and invasion abilities were determined by CCK-8 and transwell assays. Luciferase reporter assay was used to test the binding of tsRNA with its target genes. With computational methods, we identified the tRNA fragments profiles within COAD datasets, and discriminated forty-two differentially expressed tsRNAs between paired colon adenocarcinomas and non-tumor controls. Among the fragments derived from the 3' end of tRNA-His-GUG (a histidyl-transfer-RNA), tRFdb-3013a and tRFdb-3013b (tRFdb-3013a/b) were notably decreased in colon and rectum adenocarcinomas, especially, tRFdb-3013a/b might tend to be down-regulated in patients with lymphatic or vascular invasion present. The clinical survival of colorectal adenocarcinoma patients with low tRFdb-3013a/b expression was significantly worse than that of high expression patients. In colon adenocarcinoma cells, tRFdb-3013a could have inhibited cell proliferations, and reduced cell migration and invasion abilities. The enrichment analyses showed that most of tRFdb-3013a correlated-genes were enriched in the extracellular matrix associated GO terms, phagosome pathway, and a GSEA molecular signature pathway. Additionally, the 3'UTR of ST3GAL1 mRNA was predicted to contain the binding site of tRFdb-3013a/b, tRFdb-3013a/b might directly target and regulate ST3GAL1 expression in colon adenocarcinomas. These results suggested that tRFdb-3013a/b might serve as novel biomarkers for diagnosis and prognosis of colon adenocarcinomas, and act a key player in the progression of colon adenocarcinomas.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , RNA , RNA de Transferência/genética , RNA de Transferência/metabolismo , Biomarcadores
2.
Dis Markers ; 2022: 8708312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36426134

RESUMO

The tsRNAs (tRNA-derived small RNAs) are new types of small noncoding RNAs derived from tRNAs. Gliomas are well-known malignant brain tumors. The study focused on tsRNA characterizations within gliomas. Datasets processing, bioinformatics analyses, and visualizations were performed with the packages of Python and R. Cell proliferations were demonstrated via CCK8 assays and colony formation assays, and in vivo xenograft experiments. Dual-luciferase reporter assay was performed to confirm the binding of tsRNA with its targets. Via using bioinformatics approaches, the hundreds of tsRNAs with available expression abundance were identified in gliomas dataset, most of them derived from D-loop or T-loop fragments of tRNAs. Among tsRNAs derived from tRNA-Cys-GCA, tRFdb-3003a and tRFdb-3003b (tRFdb-3003a/b) were remarkably down-regulated in gliomas. The survival outcome of gliomas patients with low tRFdb-3003a/b expressions was notably worse than that of high-expression patients. In glioma cells, tRFdb-3003a could suppress cells proliferation and colony formation ability. In vivo, tRFdb-3003a suppressed the tumor growth of xenograft gliomas. Enrichment analyses displayed the tRFdb-3003a-related mRNAs were enriched in the specific GO terms, spliceosome and autophagy pathways, and three GSEA molecular signatures. Mechanically, 3'-UTR regions of VAV2 mRNA were predicted to contain the binding positions of tRFdb-3003a/b, tRFdb-3003a and tRFdb-3003b was effective to reduce the relative luciferase activity of cells with VAV2 wild-type reporter. Overexpression of tRFdb-3003a/b could down-regulated the expression levels of VAV2 protein and mRNA in glioma cells. The tRNA-Cys-GCA derived tRFdb-3003a and tRFdb-3003b might act as key player in tumor progressions of gliomas; tRFdb-3003a/b might directly bind to VAV2 and regulate VAV2 expressions in gliomas.


Assuntos
Glioma , MicroRNAs , Pequeno RNA não Traduzido , Humanos , RNA de Transferência/genética , RNA de Transferência/metabolismo , Pequeno RNA não Traduzido/genética , Glioma/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo
3.
Front Microbiol ; 13: 1039614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406414

RESUMO

Background: Our previous study suggested CD36 may be a positive regulator of hepatitis B virus (HBV) replication in vitro. Therefore, the present study aimed to investigate whether circulating soluble CD36 (sCD36) could serve as a diagnostic and prognostic biomarker for HBV-related liver diseases based on the clinic collected data. Methods: A total of 282 subjects were divided into healthy controls (HC, n = 47), chronic hepatitis B (CHB, n = 68), HBV-related liver cirrhosis (HBV-LC, n = 167). Soluble CD36 in plasma was measured by ELISA, and monocyte or platelet CD36 expression was determined by flow cytometry. Results: There was a step-wise increase of sCD36 with the progression of chronic HBV infection, and it was the highest in the HBV- LC group with liver failure (1.50, IQR:1.04-2.00) as compared with HC (0.38, IQR:0.27-0.38), CHB (0.75, IQR:0.40-1.13), and HBV-LC without liver failure (1.02, IQR,0.61-1.35) group. Circulating sCD36 was not correlated with serum HBV DNA levels, but correlated with liver function parameters. Additionally, ROC analysis confirmed sCD36 could be used to predict liver failure for HBV-LC patients, which yielded an AUC of 0.775 with 71.0% sensitivity and 72.2% specificity. Multivariate logistic regression analysis revealed sCD36 is an independent risk factor in predicting liver failure. Moreover, plasma sCD36 in HBV-LC patients was significantly correlated with prognostic indices, including MELD, MELD-Na and CHILD-PUGH scores. On the other hand, CD36 expression on monocytes or platelets was positively correlated with plasma sCD36 levels, whereas they were not strongly associated with the disease severity. Conclusion: Circulating sCD36 could be used as a novel noninvasive biomarker for predicting liver failure and prognosis in chronic HBV infected patients.

4.
Free Radic Biol Med ; 188: 337-350, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35752374

RESUMO

Excessive iron has emerged in a large population of patients suffering from degenerative or hematological diseases with a common outcome, osteoporosis. However, its underlying mechanism remains to be clarified in order to formulate effective prevention and intervention against the loss of bone-forming osteoblasts. We show herein that increased intracellular iron by ferric ammonium citrate (FAC) mimicking the so-called non-transferrin bound iron concentrations leads to ferroptosis and impaired osteoblast differentiation. FAC upregulates the expression of Trfr and DMT1 genes to increase iron uptake, accumulating intracellular labile ferrous iron for iron overload status. Then, the excessive ferrous iron generates reactive oxygen species (ROS) and lipid peroxidation products (LPO), causing ferroptosis with its typical mitochondrial morphological changes, such as shrinkaged and condensed membrane with diminution and loss of crista and outer membrane rupture. We further examined that ferroptosis is the main cause responsible for FAC-disrupted osteoblast differentiation, although apoptosis and senescence are concurrently induced as well. Mechanistically, we revealed that iron dose-dependently down-regulates the expression of Wnt target genes and inhibits the transcription of Wnt reporter TopFlash construct, so as to inhibit the canonical Wnt signaling. Wnt agonist, ferroptosis inhibitor, or antioxidant melatonin reverses iron-inhibited canonical Wnt signaling to restore osteoblast differentiation by reducing ROS and LPO production to prevent ferroptosis notably without reducing iron overload. This study proposes a working model against excessive iron-induced osteoporosis: iron chelator deferoxamine or the above three drugs prevent ferroptosis, restore traditional Wnt signaling to maintain osteoblast differentiation no matter whether iron overload is removed or not. Additionally, iron chelator should be used to a suitable extent because iron itself is necessary for osteogenic differentiation.


Assuntos
Ferroptose , Sobrecarga de Ferro , Osteoporose , Humanos , Ferro/metabolismo , Quelantes de Ferro/metabolismo , Quelantes de Ferro/farmacologia , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Osteoblastos , Osteogênese/genética , Osteoporose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Via de Sinalização Wnt
5.
Acta Biomater ; 129: 293-308, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34087440

RESUMO

Porous biphasic calcium phosphate bioceramic (BCP) possesses osteoinductivity to induce the osteoblastic commitment of mesenchymal stem cells (MSCs) and ectopic bone formation. However, the underlying mechanism remains enigmatic. We performed a gene array analysis of MSCs cocultured with BCP to screen for candidate osteoinductive modulators. Na+, K+-ATPase (NKA), an ion transporter, therefore was identified as a crucial ion transporter in regulating the osteogenesis of the cells. NKA activator, a polyclonal antibody, enriched the cytomembrane abundance of NKA and lead to an enhanced osteogenic effect of BCP. As indicated in gene array analysis and suggested by co-immunoprecipitation assay, protein phosphatase 2A (PP2A) was elevated by BCP to dephosphorylate NKA and prevent its endocytosis. The inhibition of NKA by ouabain resulted in an adverse effect on osteoinductivity of BCP. We further altered NKA activity in mice implanted with BCP and found that the intensity and incidence of osteoinduction was increased by the NKA activator. We went one step further by investigating the potential of targeting NKA in osteoporotic bone regeneration. Activating NKA upregulated osteogenic gene expression and calcium deposition ability of osteoporotic osteoblasts. Furthermore, activation of NKA in mice ameliorated estrogen-deficiency induced bone loss, in terms of increased bone mass and improved bending strength. With this osteoinductive bioceramic derived ion transporter target, we demonstrate that the activation of NKA has significant potential to revolutionize the regeneration of bone. STATEMENT OF SIGNIFICANCE: In this study, we identified an important role of Na+, K+-ATPase (NKA) have played in osteoinductivity of biphasic calcium phosphate bioceramic (BCP). Furthermore, we demonstrated the therapeutic potential of targeting NKA in osteoporotic bone regeneration. Numerous gene and protein targets to treat osteoporosis were discovered every year, mainly obtained by genomic and proteomic screenings of a large population. In contrast, our study identified an unrevealed bone regenerating target from the upregulated genes induced by an osteoinductive biomaterial. The approach was cost-saving since it did not require a large sample pool. Furthermore, the target derived from this approach was proven to be anabolic. Identification of an anabolic agent holds significant value since most of the current anti-osteoporotic therapies are antiresorptive.


Assuntos
Osteogênese , Proteômica , ATPase Trocadora de Sódio-Potássio , Animais , Diferenciação Celular , Bombas de Íon , Camundongos
6.
Regen Biomater ; 5(1): 43-59, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29423267

RESUMO

The discovery of osteoinductivity of calcium phosphate (Ca-P) ceramics has set an enduring paradigm of conferring biological regenerative activity to materials with carefully designed structural characteristics. The unique phase composition and porous structural features of osteoinductive Ca-P ceramics allow it to interact with signaling molecules and extracellular matrices in the host system, creating a local environment conducive to new bone formation. Mounting evidence now indicate that the osteoinductive activity of Ca-P ceramics is linked to their physicochemical and three-dimensional structural properties. Inspired by this conceptual breakthrough, many laboratories have shown that other materials can be also enticed to join the rank of tissue-inducing biomaterials, and besides the bones, other tissues such as cartilage, nerves and blood vessels were also regenerated with the assistance of biomaterials. Here, we give a brief historical recount about the discovery of the osteoinductivity of Ca-P ceramics, summarize the underlying material factors and biological characteristics, and discuss the mechanism of osteoinduction concerning protein adsorption, and the interaction with different types of cells, and the involvement of the vascular and immune systems.

7.
J Mater Chem B ; 6(2): 312-326, 2018 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-32254173

RESUMO

Various scaffolds have been studied in the formation of cell niches and regulation of mesenchymal stem cells (MSCs) behaviors. Collagen serves as one of the most promising materials for tissue engineering, but the cell-matrix interactions between MSCs and collagen are still poorly understood. In this study, we prepared methacrylated collagen (CMA) and gelatin (GMA) to form photo cross-linking hydrogels. The structure, morphology, mechanical properties and degradation behaviors of the derivatives and hydrogels were characterized and it was found that the advanced structure was the major difference between collagen and gelatin hydrogels. MSCs were encapsulated in the hydrogels and cultured for 14 days in vitro, with or without the tissue inhibitor of metalloproteinase (TIMP). The CCK-8 and CLSM demonstrated that the cells in the CMA hydrogels showed better spreading and proliferation than those in GMA hydrogels. The qRT-PCR and quantitative protein assay verified the inhibition effect of TIMP on metalloproteinases (MMPs). Since the inhibited MMPs led to inferior MSCs adhesion and proliferation, we considered that the appropriate degradation by MMPs would generate more bioactive domains and improve the cell microenvironment. Immunofluorescence staining further proved that the distribution of vitronectin was significantly related to MMP-1 and MMP-2. It was concluded that the differences in the advanced structures of the scaffold materials were amplified to significant differences in multiple biological cell-matrix interactions, and finally led to different cellular fates.

8.
Acta Biomater ; 59: 338-350, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28698163

RESUMO

Adequate bone substitutes osseointegration has been difficult to achieve in osteoporosis. Hydroxyapatite of the osteoporotic bone, secreted by pathologic osteoblasts, had a smaller crystal size and lower crystallinity than that of the normal. To date, little is known regarding the interaction of synthetic hydroxyapatite nanoparticles (HANPs) with osteoblasts born in bone rarefaction. The present study investigated the biological effects of HANPs on osteoblastic cells derived from osteoporotic rat bone (OVX-OB), in comparison with the healthy ones (SHM-OB). A selective effect of different concentrations of HANPs on the two cell lines was observed that the osteoporotic osteoblasts had a higher tolerance. Reductions in cell proliferation, ALP activity, collagen secretion and osteoblastic gene expressions were found in the SHM-OB when administered with HANPs concentration higher than 25µg/ml. In contrast, those of the OVX-OB suffered no depression but benefited from 25 to 250µg/ml HANPs in a dose-dependent manner. We demonstrated that the different effects of HANPs on osteoblasts were associated with the intracellular calcium influx into the endoplasmic reticulum. The in vivo bone defect model further confirmed that, with a critical HANPs concentration administration, the osteoporotic rats had more and mechanically matured new bone formation than the non-treated ones, whilst the sham rats healed no better than the natural healing control. Collectively, the observed epigenetic regulation of osteoblastic cell function by HANPs has significant implication on defining design parameters for a potential therapeutic use of nanomaterials. STATEMENT OF SIGNIFICANCE: In this study, we investigated the biological effects of hydroxyapatite nanoparticles (HANPs) on osteoporotic rat bone and the derived osteoblast. Our findings revealed a previously unrecognized phenomenon that the osteoporotic individuals could benefit from higher concentrations of HANPs, as compared with the healthy individuals. The in vivo bone defect model confirmed that, with a critical HANPs concentration administration, the osteoporotic rats had more mechanically matured new bone formation than the non-treated ones, whilst the sham rats healed no better than the natural healing control. The selective effect of HANPs might be associated with the intracellular calcium influx into the endoplasmic reticulum. Collectively, the observed epigenetic regulation by HANPs has significant implication on defining design parameters for a potential therapeutic use of nanomaterials in a pathological condition.


Assuntos
Cálcio/metabolismo , Durapatita , Nanopartículas , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Animais , Durapatita/química , Durapatita/farmacologia , Feminino , Nanopartículas/química , Nanopartículas/uso terapêutico , Osteoblastos/patologia , Osteoporose/metabolismo , Osteoporose/patologia , Ratos , Ratos Sprague-Dawley
9.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 2): 1000-1010, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27772699

RESUMO

Phase composition played a key role in the biodegradation of calcium phosphate ceramics (CaP), which in turn influences the osteoinductive ability. The in vivo biological mechanism is still poorly understood. In this study, four types of porous CaP ceramics were investigated, namely, hydroxyapatite (HA), ß-tricalcium phosphate (TCP), and biphasic calcium phosphates BCP1 and BCP2, with HA to ß-TCP ratios of 70/30 and 30/70, respectively. The four types of ceramics were implanted into thigh muscle of mice for 16weeks. Longitudinal ectopic bone formation process at gene, protein, and tissue level induced by the material was assessed. Histological analysis revealed that BCP2 was the only group that had promoted new bone formation after 16weeks. In micro-CT analysis of biodegradation, the BCP2 group had the least increment of porosity due to the new bone formation, resulting in a significant elevation in material density. Instead of a steady increase, multiple peaks were observed in most of the temporal gene expression patterns. The gene expression results were further confirmed by immunohistochemical staining of the corresponding proteins. Among the target genes, Osterix and type I collagen were activated successively. The osteoinductive BCP2 group showed earlier and significantly higher peaks in BMP2, BMPR1A, and OPG expressions than non-bone forming groups. These findings revealed that the occurrence time and magnitude of these osteogenetic gene expression peaks can be crucial in the osteoinduction process.


Assuntos
Fosfatos de Cálcio/farmacologia , Cerâmica/farmacologia , Coristoma/patologia , Osteogênese/efeitos dos fármacos , Animais , Proteína Morfogenética Óssea 2/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Implantes Experimentais , Masculino , Camundongos Endogâmicos BALB C , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Porosidade , Fator de Transcrição Sp7 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Difração de Raios X , Microtomografia por Raio-X
10.
J Mech Behav Biomed Mater ; 66: 111-118, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27865207

RESUMO

Osteosarcoma is the most common primary malignancy of bone. However, the potential variation it brings to the adjacent undamaged bone tissue is seldom investigated. In this study, we conducted a multi-level comparison of human femoral cortical bone quality in healthy cadavers (aged 42±11 years) and in resected safe margin of osteosarcoma patients (aged 49±15 years). The objective of this study was to document the changes with exposure to osteosarcoma condition in bone mechanical strength, structural morphology and elementary composition, evaluated by static and dynamic mechanical analysis (DMA), scanning electron microscopy (SEM) imaging, X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The resected clinical samples from healthy and osteosarcoma conditioned bones were grouped into the Tumor and Healthy groups, and shaped into regular beam specimens or pulverized according to testing protocols. The results of mechanical tests confirmed osteolytic deteriorations in mineral phase of the Tumor group, in terms of significant reductions in storage modulus (-53.6%, at 1Hz), bending strength (-53.0%) and stiffness (-64.8%) as compared to the Healthy group. However, the energy dissipation/absorption ability of the collagen phase in the Tumor group did not differ from the Healthy group statistically. Although specimens showed no visible morphological difference, a decline in osteocyte lacunar density in bone specimens from the Tumor group was discovered (-54.4%, p<0.001). Higher magnification observation showed that the cell-free lacunae in the Tumor group were occluded by randomized overgrown collagen fibers. XRD and FTIR analysis further demonstrated a lower hydroxyapatite crystallinity and decreased mineral:matrix ratio in pulverized samples from the Tumor group, mainly due to the prominent Amide peaks. Taken together, these data revealed a previously unrecognized effect of osteosarcoma on the adjacent "normal" bone quality. The current study may provide insights on bone tumor pathology and an advanced understanding of surgical safe margin.


Assuntos
Osso Cortical/fisiologia , Fêmur/patologia , Fêmur/fisiologia , Osteossarcoma/patologia , Adulto , Densidade Óssea , Cadáver , Humanos , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
11.
J Mech Behav Biomed Mater ; 53: 341-349, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26398779

RESUMO

Low-magnitude, high-frequency whole body vibration (WBV) is receiving increasing interest as a non-pharmacological anti-osteoporosis approach. However, the long-term effect of WBV therapy is seldom studied. In this study, the efficacy of 16-week WBV (0.3g, 30 Hz) on bone mineral density (BMD), microarchitectural parameters and mechanical properties of ovariectomized rat femur were examined by in vivo peripheral quantitative computed tomography (pQCT), ex vivo micro-computed tomography (µCT), dynamic mechanical analysis (DMA) and fracture test. To the best of our knowledge, 16 weeks of WBV administration (20 min/day) is currently the longest duration on rodent. The longitudinal BMD change showed that positive effect of WBV on ovariectomized rat femoral neck diminished with prolonged administration duration. In addition, 16-week of WBV treatment was found to cause significantly reduction in the mean BMD, trabecular BMD (Tb.BMD), trabecular bone volume ration (BV/TV), trabecular number (Tb.N) and maximum load in femoral neck of ovariectomized rat. Metaphyseal Tb.BMD and BV/TV were also significantly decreased in WBV treated ovariectomized group than non-treated controls. Whole-femur DMA was demonstrated as a sensitive tool in distinguishing osteoporotic femur from healthy aged-matched controls, in terms of decreased storage modulus (E') and loss factor (tan δ). However, E' and tan δ are not enhanced by 16-week WBV treatment. Together, these findings indicate that administration duration played an important role in the effect of WBV. 16-week WBV may exacerbate trabecular bone loss in ovariectomized rat femur, especially in trabecular-rich femoral neck region. An optimal WBV protocol including administration duration should be established prior to long-term clinical practice.


Assuntos
Densidade Óssea , Osteoporose/fisiopatologia , Osteoporose/terapia , Vibração , Animais , Fenômenos Biomecânicos , Elasticidade , Feminino , Fraturas do Colo Femoral/fisiopatologia , Fêmur/diagnóstico por imagem , Fêmur/fisiopatologia , Osteoporose/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley , Viscosidade , Microtomografia por Raio-X
12.
J Biomed Mater Res A ; 103(3): 1001-10, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24889783

RESUMO

Porous calcium phosphate ceramics (CaP ceramics) could induce ectopic bone formation which was regulated by various signal molecules. In this work, bone marrow mesenchymal stem cells (MSCs) were cultured on the surface of osteoinductive hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramics in comparison with control (culture plate) for up to 14 days to detect the signal molecules which might be affected by the CaP ceramics. Without adding osteogenic factors, MSCs cultured on HA and BCP both expressed higher Runx2, Osterix, collagen type I, osteopontin, bone sialoprotein, and osteocalcin at various stages compared with control, thus confirmed the osteoblastic differentiation of MSCs. Later study demonstrated the messenger RNA level of bone morphogenetic protein 2 (BMP2) and BMP4 were also significantly enhanced by HA and BCP. Furthermore, Smad1, 4, 5, and Dlx5, the main molecules in the BMP/Smads signaling pathway, were upregulated by HA and BCP. Moreover, the higher expression of Smads and BMP2, 4 in BCP over HA, corresponded to the better performance of BCP in stimulating in vitro osteoblastic differentiation of MSCs. This was in accordance with the better osteoinductivity of BCP over HA in vivo. Altogether, these results implied that the CaP ceramics may initiate the osteoblastic differentiation of MSCs by influencing the expression of molecules in BMP/Smads pathway.


Assuntos
Materiais Biocompatíveis/química , Proteínas Morfogenéticas Ósseas/metabolismo , Fosfatos de Cálcio/química , Cerâmica/química , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Proteínas Smad/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Durapatita/química , Regulação da Expressão Gênica , RNA Mensageiro/metabolismo , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Difração de Raios X
13.
Int J Biol Macromol ; 74: 367-75, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25445680

RESUMO

Natural polysaccharides are extensively investigated as cell scaffold materials for cellular adhesion, proliferation, and differentiation due to their excellent biocompatibility, biodegradability, and biofunctions. However, their application is often severely limited by their mechanical behavior. In this study, a tough and elastic hydrogel scaffold was prepared with hyaluronic acid (HA) and chondroitin sulfate (CS). HA and CS were conjugated with tyramine (TA) and the degree of substitution (DS) was 10.7% and 11.3%, respectively, as calculated by (1)H NMR spectra. The hydrogel was prepared by mixing HA-TA and CS-TA in presence of H2O2 and HRP. The sectional morphology of hydrogels was observed by SEM, static and dynamic mechanical properties were analyzed by Shimadzu electromechanical testing machine and dynamic mechanical thermal analyzer Q800. All samples showed good ability to recover their appearances after deformation, the storage modulus (E') of hydrogels became higher as the testing frequency went up. Hydrogels also showed fatigue resistance to cyclic compression. Mesenchymal stem cells encapsulated in hydrogels showed good cell viability as detected by CLSM. This study suggests that the hydrogels have both good mechanical properties and biocompatibility, and may serve as model systems to explore mechanisms of deformation and energy dissipation or find some applications in tissue engineering.


Assuntos
Sulfatos de Condroitina/química , Ácido Hialurônico/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Fenômenos Mecânicos , Tecidos Suporte , Animais , Materiais Biocompatíveis , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Teste de Materiais , Células-Tronco Mesenquimais , Ressonância Magnética Nuclear Biomolecular , Coelhos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...